Lu, Z., Zhu, F., Higo, Y., & Zhao, J. (2025). Coupled semi-Lagrangian and poroelastic peridynamics for modeling hydraulic fracturing in porous media.
Computer Methods in Applied Mechanics and Engineering, 437, 117794.
https://doi.org/10.1016/j.cma.2025.117794
Higo, Y., Takegawa, Y., Zhu, F., & Uchiyama, D. (2025). A three-phase two-point MPM for large deformation analysis of unsaturated soils.
Computers and Geotechnics, 177, 106860.
https://doi.org/10.1016/j.compgeo.2024.106860
2024
Yang, C., Zhu, F., & Zhao, J. (2024). A multi-horizon fully coupled thermo-mechanical peridynamics.
Journal of the Mechanics and Physics of Solids, 191, 105758.
https://doi.org/10.1016/j.jmps.2024.105758
Yang, C., Zhu, F., & Zhao, J. (2024). Coupled total- and semi-Lagrangian peridynamics for modelling fluid-driven fracturing in solids.
Computer Methods in Applied Mechanics and Engineering, 419, 116580.
https://doi.org/10.1016/j.cma.2023.116580
Wu, S., Otake, Y., Mizutani, D., Liu, C., Asano, K., Sato, N., Saito, T., Baba, H., Fukunaga, Y., Higo, Y. and Kamura, A. (2024). Future-proofing geotechnics workflows: Accelerating problem-solving with large language models.
Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards.
https://doi.org/10.1080/17499518.2024.2381026
Chandra, B., Hashimoto, R., Kamrin, K., & Soga, K. (2024). Mixed material point method formulation, stabilization, and validation for a unified analysis of free-surface and seepage flow.
Journal of Computational Physics, 519, 113457.
https://doi.org/10.1016/j.jcp.2024.113457
Chandra, B., Hashimoto, R., Matsumi, S., Kamrin, K., & Soga, K. (2024). Stabilized mixed material point method for incompressible fluid flow analysis.
Computer Methods in Applied Mechanics and Engineering, 419, 116644.
https://doi.org/10.1016/j.cma.2023.116644
Higo, Y., & Kido, R. (2024). A microscopic interpretation of hysteresis in the water retention curve of sand.
Géotechnique.
https://doi.org/10.1680/jgeot.23.00084
~2023
Shi, K., Zhu, F., & Zhao, J. (2022). Multi-scale analysis of shear behaviour of crushable granular sand under general stress conditions.
Géotechnique, 74(5), 443-460.
https://doi.org/10.1680/jgeot.21.00412
Nishimura, S., Okajima, S., Joshi, B. R., Higo, Y., & Tokoro, T. (2021). Volumetric behaviour of clays under freeze–thaw cycles in a mesoscopically uniform element.
Géotechnique, 71(12), 1150–1164.
https://doi.org/10.1680/jgeot.20.P.047
Hashimoto, R., Sueoka, T., Koyama, T., & Kikumoto, M. (2021). Improvement of discontinuous deformation analysis incorporating implicit updating scheme of friction and joint strength degradation.
Rock Mechanics and Rock Engineering, 54(8), 4239-4263.
https://doi.org/10.1007/s00603-021-02459-2
Otake, Y., Shigeno, K., Higo, Y., & Muramatsu, S. (2021). Practical dynamic reliability analysis with spatiotemporal features in geotechnical engineering.
Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 16(4), 662-677.
https://doi.org/10.1080/17499518.2021.1971250
Fukushima, Y., Higo, Y., Matsushima, T., & Otake, Y. (2021). Liquid bridge contribution to shear behavior of unsaturated soil: modeling and application to a micromechanics model.
Acta Geotechnica, 16, 2693–2711.
https://doi.org/10.1007/s11440-021-01162-2
Zhu, F., & Zhao, J. (2021). Peridynamic modelling of blasting induced rock fractures.
Journal of the Mechanics and Physics of Solids, 153, 104469.
https://doi.org/10.1016/j.jmps.2021.104469
Kido, R., Higo, Y., Takamura, F., Morishita, R., Khaddour, G., & Salager, S. (2020). Morphological transitions for pore water and pore air during drying and wetting processes in partially saturated sand.
Acta Geotechnica, 15, 1745–1761.
https://doi.org/10.1007/s11440-020-00904-6
Kido, R., & Higo, Y. (2020). Microscopic characteristics of partially saturated dense sand and their link to macroscopic responses under triaxial compression conditions.
Acta Geotechnica, 15, 3055–3073.
https://doi.org/10.1007/s11440-020-00950-0
Hashimoto, Ryota, Takashi Tsuchida, Takeo Moriwaki, and Seiji Kano. (2020). Hiroshima Prefecture geo-disasters due to Western Japan Torrential rainfall in July 2018.
Soils and Foundations, 60(1), 283-299.
https://doi.org/10.1016/j.sandf.2019.11.010
Cikmit, A. A., Tsuchida, T., Hashimoto, R., Honda, H., Kang, G., & Sogawa, K. (2019). Expansion characteristic of steel slag mixed with soft clay.
Construction and Building Materials, 227, 116799.
https://doi.org/10.1016/j.conbuildmat.2019.116799
Yamada, Y., Tsuchida, T., Kyaw, N. M., Aoyama, T., Hlaing, M. M. S., & Hashimoto, R. (2019). A study on physical and mechanical properties for soft to firm clays in Yangon area–Properties of clays deposit at the sedimentary basins in Myanmar.
Soils and Foundations, 59(6), 2279-2298.
https://doi.org/10.1016/j.sandf.2019.05.008
Hashimoto, R., Ohnishi, Y., Sasaki, T., & Miki, S. (2019). Stability analysis of underground space with discontinuous planes using a four-node ISO-parametric element numerical manifold method with rigid body rotation.
Tunnelling and Underground Space Technology, 92, 103047.
https://doi.org/10.1016/j.tust.2019.103047
Hashimoto, R., Kikumoto, M., Koyama, T., & Mimura, M. (2017). Method of deformation analysis for composite structures of soils and masonry stones.
Computers and Geotechnics, 82, 67-84.
https://doi.org/10.1016/j.compgeo.2016.09.011
Higo, Y., Lee, C., Doi, T., Kinugawa, T., Kimura, M., Kimoto, S., & Oka, F. (2015). Study of dynamic stability of unsaturated embankments with different water contents by centrifugal model tests.
Soils and Foundations, 55(1), 112-126.
https://doi.org/10.1016/j.sandf.2014.12.009
Higo, Y., Oka, F., Sato, T., Matsushima, Y., & Kimoto, S. (2013). Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus X-ray CT with digital image correlation.
Soils and Foundations, 53(2), 181-198.
https://doi.org/10.1016/j.sandf.2013.02.001
Higo, Y., Oka, F., Kimoto, S., Sanagawa, T., & Matsushima, Y. (2011). Study of strain localization and microstructural changes in partially saturated sand during triaxial tests using microfocus X-ray CT.
Soils and Foundations, 51(1), 95-111.
https://doi.org/10.3208/sandf.51.95
Higo, Y., Oka, F., Kimoto, S., Morinaka, Y., Goto, Y., & Chen, Z. (2010). A Coupled MPM-FDM Analysis Method for Multi-Phase Elasto-Plastic Soils.
Soils and Foundations, 50(4), 515-532.
https://doi.org/10.3208/sandf.50.515
Oka, F., Kimoto, S., Takada, N., Gotoh, H., & Higo, Y. (2010). A Seepage-Deformation Coupled Analysis of an Unsaturated River Embankment using a Multiphase Elasto-Viscoplastic Theory.
Soils and Foundations, 50(4), 483-494.
https://doi.org/10.3208/sandf.50.483
Kodaka, T., Higo, Y., Kimoto, S., & Oka, F. (2007). Effects of sample shape on the strain localization of water-saturated clay.
International Journal for Numerical and Analytical Methods in Geomechanics.
https://doi.org/10.1002/nag.585
Higo, Y., Oka, F., Kodaka, T., & Kimoto, S. (2006). Three-dimensional strain localization of water-saturated clay and numerical simulation using an elasto-viscoplastic model.
Philosophical Magazine, 86(21-22), 3205-3240.
https://doi.org/10.1080/14786430500321203
Higo, Y., Oka, F., Jiang, M., & Fujita, Y. (2005). Effects of transport of pore water and material heterogeneity on strain localization of fluid-saturated gradient-dependent viscoplastic geomaterial.
International Journal for Numerical and Analytical Methods in Geomechanics.
https://doi.org/10.1002/nag.423
Kimoto, S., Oka, F., & Higo, Y. (2004). Strain localization analysis of elasto-viscoplastic soil considering structural degradation.
Computer Methods in Applied Mechanics and Engineering, 193(27-29), 2845-2866.
https://doi.org/10.1016/j.cma.2003.09.017
Oka, F., Higo, Y., & Kimoto, S. (2002). Effect of dilatancy on the strain localization of water-saturated elasto-viscoplastic soil.
International Journal of Solids and Structures, 39(13-14), 3625-3647.
https://doi.org/10.1016/S0020-7683(02)00171-3