本文へスキップ

京都大学 大学院工学研究科 社会基盤工学専攻

地盤力学講座 地盤力学分野

研究業績RESEARCH ACHIEVEMENT

論文発表

2025

  • Lu, Z., Zhu, F., Higo, Y., & Zhao, J. (2025). Coupled semi-Lagrangian and poroelastic peridynamics for modeling hydraulic fracturing in porous media. Computer Methods in Applied Mechanics and Engineering, 437, 117794. https://doi.org/10.1016/j.cma.2025.117794
  • Higo, Y., Takegawa, Y., Zhu, F., & Uchiyama, D. (2025). A three-phase two-point MPM for large deformation analysis of unsaturated soils. Computers and Geotechnics, 177, 106860. https://doi.org/10.1016/j.compgeo.2024.106860

2024

  • Yang, C., Zhu, F., & Zhao, J. (2024). A multi-horizon fully coupled thermo-mechanical peridynamics. Journal of the Mechanics and Physics of Solids, 191, 105758. https://doi.org/10.1016/j.jmps.2024.105758
  • Yang, C., Zhu, F., & Zhao, J. (2024). Coupled total- and semi-Lagrangian peridynamics for modelling fluid-driven fracturing in solids. Computer Methods in Applied Mechanics and Engineering, 419, 116580. https://doi.org/10.1016/j.cma.2023.116580
  • Wu, S., Otake, Y., Mizutani, D., Liu, C., Asano, K., Sato, N., Saito, T., Baba, H., Fukunaga, Y., Higo, Y. and Kamura, A. (2024). Future-proofing geotechnics workflows: Accelerating problem-solving with large language models. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards. https://doi.org/10.1080/17499518.2024.2381026
  • Chandra, B., Hashimoto, R., Kamrin, K., & Soga, K. (2024). Mixed material point method formulation, stabilization, and validation for a unified analysis of free-surface and seepage flow. Journal of Computational Physics, 519, 113457. https://doi.org/10.1016/j.jcp.2024.113457
  • Chandra, B., Hashimoto, R., Matsumi, S., Kamrin, K., & Soga, K. (2024). Stabilized mixed material point method for incompressible fluid flow analysis. Computer Methods in Applied Mechanics and Engineering, 419, 116644. https://doi.org/10.1016/j.cma.2023.116644
  • Shi, K., Zhu, F., & Zhao, J. (2024). The critical state of crushable granular sand. Acta Geotechnica, 19(1), 1-18. https://doi.org/10.1007/s11440-023-02112-y
  • Higo, Y., & Kido, R. (2024). A microscopic interpretation of hysteresis in the water retention curve of sand. Géotechnique. https://doi.org/10.1680/jgeot.23.00084

~2023

  • Shi, K., Zhu, F., & Zhao, J. (2022). Multi-scale analysis of shear behaviour of crushable granular sand under general stress conditions. Géotechnique, 74(5), 443-460. https://doi.org/10.1680/jgeot.21.00412
  • Nishimura, S., Okajima, S., Joshi, B. R., Higo, Y., & Tokoro, T. (2021). Volumetric behaviour of clays under freeze–thaw cycles in a mesoscopically uniform element. Géotechnique, 71(12), 1150–1164. https://doi.org/10.1680/jgeot.20.P.047
  • Hashimoto, R., Sueoka, T., Koyama, T., & Kikumoto, M. (2021). Improvement of discontinuous deformation analysis incorporating implicit updating scheme of friction and joint strength degradation. Rock Mechanics and Rock Engineering, 54(8), 4239-4263. https://doi.org/10.1007/s00603-021-02459-2
  • Otake, Y., Shigeno, K., Higo, Y., & Muramatsu, S. (2021). Practical dynamic reliability analysis with spatiotemporal features in geotechnical engineering. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 16(4), 662-677. https://doi.org/10.1080/17499518.2021.1971250
  • Fukushima, Y., Higo, Y., Matsushima, T., & Otake, Y. (2021). Liquid bridge contribution to shear behavior of unsaturated soil: modeling and application to a micromechanics model. Acta Geotechnica, 16, 2693–2711. https://doi.org/10.1007/s11440-021-01162-2
  • Zhu, F., & Zhao, J. (2021). Peridynamic modelling of blasting induced rock fractures. Journal of the Mechanics and Physics of Solids, 153, 104469. https://doi.org/10.1016/j.jmps.2021.104469
  • Kido, R., Higo, Y., Takamura, F., Morishita, R., Khaddour, G., & Salager, S. (2020). Morphological transitions for pore water and pore air during drying and wetting processes in partially saturated sand. Acta Geotechnica, 15, 1745–1761. https://doi.org/10.1007/s11440-020-00904-6
  • Kido, R., & Higo, Y. (2020). Microscopic characteristics of partially saturated dense sand and their link to macroscopic responses under triaxial compression conditions. Acta Geotechnica, 15, 3055–3073. https://doi.org/10.1007/s11440-020-00950-0
  • Hashimoto, Ryota, Takashi Tsuchida, Takeo Moriwaki, and Seiji Kano. (2020). Hiroshima Prefecture geo-disasters due to Western Japan Torrential rainfall in July 2018. Soils and Foundations, 60(1), 283-299. https://doi.org/10.1016/j.sandf.2019.11.010
  • Cikmit, A. A., Tsuchida, T., Hashimoto, R., Honda, H., Kang, G., & Sogawa, K. (2019). Expansion characteristic of steel slag mixed with soft clay. Construction and Building Materials, 227, 116799. https://doi.org/10.1016/j.conbuildmat.2019.116799
  • Yamada, Y., Tsuchida, T., Kyaw, N. M., Aoyama, T., Hlaing, M. M. S., & Hashimoto, R. (2019). A study on physical and mechanical properties for soft to firm clays in Yangon area–Properties of clays deposit at the sedimentary basins in Myanmar. Soils and Foundations, 59(6), 2279-2298. https://doi.org/10.1016/j.sandf.2019.05.008
  • Hashimoto, R., Ohnishi, Y., Sasaki, T., & Miki, S. (2019). Stability analysis of underground space with discontinuous planes using a four-node ISO-parametric element numerical manifold method with rigid body rotation. Tunnelling and Underground Space Technology, 92, 103047. https://doi.org/10.1016/j.tust.2019.103047
  • Hashimoto, R., Kikumoto, M., Koyama, T., & Mimura, M. (2017). Method of deformation analysis for composite structures of soils and masonry stones. Computers and Geotechnics, 82, 67-84. https://doi.org/10.1016/j.compgeo.2016.09.011
  • Higo, Y., Lee, C., Doi, T., Kinugawa, T., Kimura, M., Kimoto, S., & Oka, F. (2015). Study of dynamic stability of unsaturated embankments with different water contents by centrifugal model tests. Soils and Foundations, 55(1), 112-126. https://doi.org/10.1016/j.sandf.2014.12.009
  • Higo, Y., Oka, F., Sato, T., Matsushima, Y., & Kimoto, S. (2013). Investigation of localized deformation in partially saturated sand under triaxial compression using microfocus X-ray CT with digital image correlation. Soils and Foundations, 53(2), 181-198. https://doi.org/10.1016/j.sandf.2013.02.001
  • Higo, Y., Oka, F., Kimoto, S., Sanagawa, T., & Matsushima, Y. (2011). Study of strain localization and microstructural changes in partially saturated sand during triaxial tests using microfocus X-ray CT. Soils and Foundations, 51(1), 95-111. https://doi.org/10.3208/sandf.51.95
  • Higo, Y., Oka, F., Kimoto, S., Morinaka, Y., Goto, Y., & Chen, Z. (2010). A Coupled MPM-FDM Analysis Method for Multi-Phase Elasto-Plastic Soils. Soils and Foundations, 50(4), 515-532. https://doi.org/10.3208/sandf.50.515
  • Oka, F., Kimoto, S., Takada, N., Gotoh, H., & Higo, Y. (2010). A Seepage-Deformation Coupled Analysis of an Unsaturated River Embankment using a Multiphase Elasto-Viscoplastic Theory. Soils and Foundations, 50(4), 483-494. https://doi.org/10.3208/sandf.50.483
  • Kodaka, T., Higo, Y., Kimoto, S., & Oka, F. (2007). Effects of sample shape on the strain localization of water-saturated clay. International Journal for Numerical and Analytical Methods in Geomechanics. https://doi.org/10.1002/nag.585
  • Higo, Y., Oka, F., Kodaka, T., & Kimoto, S. (2006). Three-dimensional strain localization of water-saturated clay and numerical simulation using an elasto-viscoplastic model. Philosophical Magazine, 86(21-22), 3205-3240. https://doi.org/10.1080/14786430500321203
  • Higo, Y., Oka, F., Jiang, M., & Fujita, Y. (2005). Effects of transport of pore water and material heterogeneity on strain localization of fluid-saturated gradient-dependent viscoplastic geomaterial. International Journal for Numerical and Analytical Methods in Geomechanics. https://doi.org/10.1002/nag.423
  • Kimoto, S., Oka, F., & Higo, Y. (2004). Strain localization analysis of elasto-viscoplastic soil considering structural degradation. Computer Methods in Applied Mechanics and Engineering, 193(27-29), 2845-2866. https://doi.org/10.1016/j.cma.2003.09.017
  • Oka, F., Higo, Y., & Kimoto, S. (2002). Effect of dilatancy on the strain localization of water-saturated elasto-viscoplastic soil. International Journal of Solids and Structures, 39(13-14), 3625-3647. https://doi.org/10.1016/S0020-7683(02)00171-3

京都大学 肥後研

京都大学 大学院工学研究科
社会基盤工学専攻 地盤力学分野

〒615-8540
京都市西京区京都大学桂 Cクラスター1棟

235号室(肥後教授室)
236号室(橋本准教授室)
291号室(ZHU准教授室)
234号室(LU特定助教室)
238号室(学生部屋)